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Abstract
Trusted execution environments (TEEs) allow asserting the
integrity of previously untrusted third parties using novel
hardware features. Unlike previous approaches to trusted
computing, they have become readily available onmost con-
sumer devices sold today. This opens up the possibility for
many novel applications, where not only the server, but also
clients are equipped with trusted hardware.

This work presents a mechanism to run trusted proxies
on clients in order to offload large parts of the workload
from a database server. We show that none of the integrity
and confidentiality guarantees provided by the database are
weakened as a result this mechanism. Evaluation shows that
we can improve throughput by at least an order of magni-
tude, when the database server itself runs in a TEE. Further
we can improve performance by a factor of two, even in the
case where the server is not limited by a TEE.
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1 Introduction
Trusted execution environments (TEEs) are a newly emerg-
ing hardware feature that can enhance the functionality of
demanding server applications such as databases. They can
be used, for example, to ensure database integrity [7] as well
as confidentiality of the stored data [1, 4].
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However, because of the unique programmingmodel, it is
non-trivial to port databases into a TEE environment. In par-
ticular, database applications typically require a large work-
ing set, whereas the current industry standard for TEEs, In-
tel SGX, only provides a limited amount of memory for en-
claves. Not surprisingly, measurements of database perfor-
mance as a function of working set size, as shown in Figure
1 show that working set sizes that exceed enclave memory
limits lead to drastic reduction in performance. Thus, new
methods need to be investigated on how to scale databases
efficiently in a trusted environment.
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Figure 1. The overhead of memory access inside SGX. Once
the memory size exceed that of the EPC overhead increases
significantly.

This paper proposes a technique for offloading database
functionality to clients, securely, through the use of TEEs.
This is a general approach that can be used to harness the
additional resources provided by clients by offloading work
from centralized servers to the periphery of the network. It
enables the centralized database to take advantage of greater
concurrency, CPU, memory and other resources provided
by the clients. Specifically in the SGX context, it enables
computations that do not fit in a single enclave memory to
be distributed across multiple enclaves.
The core mechanism that serves as the foundation of our

approach is a proxy that implements the same service API as
the server. When the proxy operates in a TEE, it can use re-
mote attestation to establish that it is capable of maintaining
the same semantics for data as the centralized server. This
enables the server to outsource functionality, such as main-
taining constraints, performing access controls, and the like,
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to the proxy, instead of performing them on the centralized
server.

In the next section, we provide a RAID-like taxonomy,
useful for capturing the outsourcing decisions related to TEE-
backed applications.We then describe the design of our client-
side proxy mechanism. Finally, we provide a preliminary
evaluation of our prototype. Our evaluation shows that this
approach can achieve an improvement of an order of mag-
nitude in throughput, without impacting latencies. Further,
the design does not compromise the integrity and confiden-
tiality guarantees provided by the TEE.

2 Networks of Trusted Enclaves
Applications that are comprised of multiple connected pro-
cesses can leverage TEEs in many different ways, and at var-
ious different locations of their network. In this section, we
break the different setups down into 5 classes of Networks
of Trusted Enclaves (NoTEs). Further, we categorize related
work in one of these categories.

NoTEs rely on an essential feature of TEEs: remote attes-
tation. Remote attestation creates a bidirectional encrypted
channel, that comes with a one-way integrity guarantee. At
a very high level, one party sends a signed quote about its
enclave, enabling the other party to verify the quote and
to determine whether their counterparty is running on a
trustworthy TEE. Finally they establish a secure session us-
ing Diffie-Helman Key Exchange (DHKE). For the remain-
der of the established session, they then have a trusted and
encrypted communication channel between the two end-
points.

Two remote attestations can be chained to create a bidi-
rectional channel that asserts integrity in both directions of
the channel. Setups with more than one TEE in a network
rely on such two-way channels to establish secure commu-
nication between enclaves. Application secrets can then be
shared through such channels.

Applications are comprised of both a trusted, isolated com-
ponent that executes inside a TEE, as well as a untrusted
component responsible for interactionwith the externalworld.
The untrusted component is responsible for input/output
operations, including all operating system services.

2.1 NoTE 0 and 1
The baseline architecture for a high-integrity database is
one where there is a single TEE that hosts a trusted exe-
cution environment on the server-side to provide execution
integrity guarantees to clients. Clients, however, do not pro-
vide trusted environments and are assumed to be non-malicious.
The SCONE [3] and Haven [6] projects focused on such a
setup.

NoTE 1 systems bring additional resources by sharding
the single server across multiple hosts, each supporting a
TEE. This enables the same integrity guarantees, while pro-
viding higher scalability. NoTE 1 systems can also describe a
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Figure 2. In a NoTE 0 setup (left) the server provides a TEE.
NoTE 1 (right) extends this design by sharding the server
across multiple machines, each providing a TEE.

setup where confidential data is processed by being passed
between multiple trusted servers. Such a setup is described
in Ryoan [10].

2.2 NoTE 2
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Figure 3. In a NoTE 2 setup, only the clients provide TEEs

In many environments the server wants to shield the ap-
plication from byzantine clients. For example, it might want
to shield application logic from clients [9], or prevent par-
ticipants in an online video game from cheating [5]. Simi-
larly, application constraints may prohibit storing the unen-
crypted dataset outside of the enclave. One might want to
cache data at the client to increase performance. However,
as soon as data is moved to the client, the application logic
loses all control over it. This is not desirable as, for exam-
ple, applications might want to enforce policies [14] on the
data. Further, an unprotected client cache would increase
the attack surface of the system considerably. Servers that
have no control over the software stack of a client and can-
not ensure they run a secure system that is guarded against
attacks.
In such cases, the clients each can provide a TEE to assert

to the server that they will not misbehave or leak private
information. We classify such systems, where each client
provides a TEE, as NoTE 2.

2.3 NoTE 3 and 4
NoTE 1 and NoTE 2 systems assume a hybrid trust environ-
ment: either the server or the clients are assumed to behave
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Figure 4. In a NoTE 3 setup (left), all members of a client-
server setup are backed by a TEE. NoTE 4 (right) extends
this by sharding the server across multiple machines where
each is backed by a TEE

non-maliciously. However, in a full byzantine environment,
this assumption does not hold. Clients may not trust the
server, but the server may also not trust the client. NoTE 3
systems can handle full byzantine environments by requir-
ing both the server and the clients to run in trusted environ-
ments.

Similarly NoTE 4 systems consist of a set of clients that
each run a TEE and a set of server shards that each pro-
vide a TEE. This setup allows both to offload computation
to clients and to scale the server horizontally.

2.4 NoTE 5
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Figure 5. A NoTE 5 setup is a full peer to peer network,
where each peer runs a TEE.

At NoTE levels 1 through 4, all of the servers were under
the physical control of a single entity. A final, most aggres-
sive form of outsourcing is a database configuration where
servers, equipped with TEEs, are provided by multiple mu-
tually distrusting entities, and form a peer-to-peer database
cloud. NoTE 5 systems have the potential to untap large
amounts of resources, though they also pose significant chal-
lenges, as the compromise of a single host can affect the in-
tegrity of the system. Examples of early NoTE 5 systems are
payment networks [11] and permissionless consensusmech-
anisms that use TEEs as a Proof-of-Work replacement [15].
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Figure 6.Our design is a NoTE 3 setup, where each client in-
teracts with the server through a proxy it runs locally. Prox-
ies can read data either directly from the storage layer or
interact with the database.

3 Design of Client-Side Proxies
This paper focuses primarily on NoTE 2 and 3 environments.
In particular, we sketch how a database can securely offload
work to its clients through the use of TEEs. The database
is a simple key-value store that can run either fully run in-
side SGX (enclave mode) or in a regular environment (fake
enclavemode). To simplify this discussion, we assume a data-
store that support only read and write operations. The data-
base further enforces access policies on the data.
The proxy mechanism relies on clients running a TEE-

based proxy service. The key insight is to offload process-
ing from the server side to the clients, where the exact same
functionality that would be executed inside the server is in-
stead performed on the client, using client resources. This
approach is particularly effective for any kind of processing
that pertains specifically to the client’s request, and is in-
effective when the processing to be performed requires ac-
cessing shared data. In particular, operations such as check-
ing parameters, maintaining invariants, and enforcing secu-
rity policies that pertain solely to the values provided by the
client are operations that can benefit from a NoTE 2 or 3 ar-
chitecture. A security policy that checks, for instance, that
fields x ,y in a client transaction have a property x ≥ y is
one that is going to yield large performance improvements
in these architectures, as these checks can be performed
concurrently, without coordination. A security policy that
checks a field x against another object in the database, not
part of the client’s transaction, is still guaranteed to operate
correctly, by forwarding the processing back to the server,
but will not yield a performance benefit.

The mechanism is effective for workloads that are read-
heavy. Sine writes have to be processed by the centralized



SysTEX’17, October 28, 2017, Shanghai, China Kai Mast, Lequn Chen, and Emin Gün Sirer

server, secure clientside processing is unlikely to yield sig-
nificant benefits on update-heavy workloads. This means,
while many operations can be served by the proxies, not all
can. For example, a service that wants to limit the number of
accesses to an object has to do so by tracking its state at the
server. Thus, in such a setup, proxies cannot permit reads
without contacting the server. Proxies can, however, serve
other policies set by the datastore, such as limiting access to
a specific set of users. NoTE 2 and 3 systems provide failure
isolation guarantees. Proper implementation of the proxy
can ensure that a proxy failure shall only affect clients con-
nected to it. In order to achieve this, proxies need to forward
all updates to the server, and only handle reads directly.

Any time data is replicated, for instance, between the server
and client proxies, there is the potential for nodes to operate
on stale data. Two design decisions ensure that the server
always operates on fresh data. First, the database stores en-
tries in an append-only log, partitioned into blocks. This en-
ables a straightforward paging mechanism, where data that
cannot fit into the server’s enclave can be safely sealed and
offloaded out of the enclave. Efficient paging is enabled by
storing all changes to the data in an append-only log, which
is sequenced into blocks. Only the most recent block can be
modified, and is kept in memory at all time. Previous work
has shown that such a custom paging mechanism can yield
a performance gain over the built-in SGX mechanism [13].
This mechanism does not prevent from loading stale data
after an enclave has been restarted, which is out of scope
for this paper.
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Figure 7.The index is stored as "Merkle-trie" ensuring small
index size and high integrity.

In order to access the append-only log efficiently, an au-
thenticated index stores the location of themost recent value
of an object. A memory-efficient way to implement such an
index is using a trie [8]. The index might only fit in mem-
ory partially, in which case the database will start to evict
parts of the index as well. To ensure trie-nodes loaded from
disk are the most recent, each nodes hold hashes for its chil-
dren forming a Merkle tree [12]. Figure 7 shows a sketched

layout of theMerkle-trie. An update then has not only to up-
date the leaf representing the object, but also updateMerkle-
hashes.
Figure 6 shows how clients, server, and proxies interact

with each other. The proxies establish two-way authenti-
cated channels to the server using an attestation handshake.
Once such a channel is established, both sides can trust the
integrity of the other party’s computing environment. Fur-
ther, the client connects to a proxy using a one-way authen-
ticated channel. Here, only the client can trust the server’s
integrity, but not the other way around. Because of this,
servers must check the databases access policy before han-
dling a clients request.
Once trust, and a secure channel, is established between

a proxy and the server, the server can hand over applica-
tion secrets to the proxy, without harming application in-
tegrity. In particular, the server hands off the encryption key
for data blocks. The proxy can then bypass the TEE on the
server side and access encrypted data blocks directly from
the storage layer. This is the key mechanism that allows us
to increase performance of the overall system.
We propose a simple push mechanism to notify proxies

of updates to the data. Once the server has processed an
update, it forwards the changes to the proxies using the
authenticated channel. This way, updates to the index are
propagated to proxies efficiently, without the need to proxy
to poll the storage layer. This mechanism ensures that once
an update u1 has been received by a proxy. It knows that all
updates that were processed by the server before u1 have
also been received. Further, because writes are still only pro-
cessed at the centralized server, this setup maintains strong
consistency.

4 Preliminary Prototype Evaluation
Our preliminary prototype follows the design described above.
We implemented the full functionality described in the pa-
per, except for the hash verification in the index. The server
implementation runs the trusted database server and the un-
trusted storage layer in the same process. The encrypted
storage layer caches data inmemory to increase read through-
put, but also stores it on disk to achieve durability.
Our benchmarkmodels each client workload individually.

Database workloads are often approximated using a single
Zipf distribution [2], which models the accumulated load by
all clients in the system. In a system where each client has
its own proxy, the workload has to be generated on a per-
client level. We opt for a simple mathematical model, where
each client shifts its Zipf distribution by an individual offset.
In the future, we may need to develop more sophisticated
mathematical models for such a client centric workload es-
timation.
In our evaluation up to one hundred clients issue reads

to a central server. Each client runs a trusted proxy inside
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a TEE. The server process was hosted on a machine run-
ning Ubuntu 17.04, equippedwith 32GB of RAMand an Intel
Core i7 6700K CPU offering 8 logical cores. The current pro-
totype uses version 1.9 of the Intel SGX SDK and is compiled
using GNU g++7. The client workload is distributed across
multiple machines to make sure only the server’s process-
ing power can be a possible bottleneck. Because at the time
of the evaluation the number of machines with SGX support
available to use is still limited, we evaluate the setup using
the simulator provided by the SGX SDK. We observed that
simulation mode performs at roughly twice the throughput
of hardware. Thus, while the proxies in such a setup might
be slower, the server itself also would be and may yield even
a higher benefit from offloading its work. To make it a fair
comparison, we also run the baseline without proxies in sim-
ulation mode. We further provide a second baseline that
shows how the system performs without trusted environ-
ment at all.
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Figure 8. Throughput of read operations. The setup with
proxies vastly outperforms that without.

Figure 8 shows the throughput of a proxy setup compared
to that without proxies and a setup that does not provide
a trusted execution environment. Even with only a hand-
ful clients the proxy mechanism performs better. This con-
firms our assumption that the TEE itself, not the storage
layer is the bottleneck. When we increase the number of
clients, the proxy setup outperforms that of the non-proxy
one by an order of magnitude. After about 40 clients, the
non-proxy setup is too congested to make much progress
and its throughput drops. Further, we show that the proxy
setup, where both clients and server, run in a TEE, performs
even better than a setup where the server is not constrained
by a TEE at all. We also observed that the proxy mechanism
does not add significant network overhead, as only index

updates, and not the data itself, are broadcasted to the prox-
ies.
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Figure 9. Distribution of latencies under a Zipf workload.
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Figure 10. Distribution of latencies under a uniform work-
load.

We further investigate how the proxy mechanism affects
the client latencies using a single client benchmark. This
configuration favors the setup without proxies the most. In
Figures 9 and 10, we show the resulting latencies for both
uniform and Zipfworkloads.While the 95 and 99 percentiles
are a little higher, due to the additional network hop, the
mean of the proxy setup is lower, as more requests can be
served from the cache directly. Overall the latency change
is negligible.
The setup without proxies usually has very low latencies

except for when blocks need to be loaded or evicted. This
means that there is a long tail for the latencies. The setup
with proxies has higher mean latencies but does not have
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this long tail as enough data can be cached at the proxies.
We conclude that using the proxy mechanism the latencies
are slightly higher butmore predicable, thanwhen not using
proxies.

5 Conclusion and Future Work
This work first provided a taxonomy for different strate-
gies for outsourcing functionality from a TEE, and then pre-
sented a novel approach to how TEE-backed applications
are able to scale without comprising any of the TEE guar-
antees. It showed that this mechanism is compatible with
databases running in a TEE itself and can also be beneficial
in a setup where the database does not run in a TEE. Further,
we showed that the approach is orthogonal to other scaling
techniques such as sharding the datastore across multiple
machines (NoTE 4).

There are still many open questions on how such a de-
sign can accommodate all API calls of a database efficiently.
In particular, our design for updates is still very simplistic:
whenever the server processes an update, it will forward it
to all proxies.We imagine a future systemwhere proxies can
subscribe to objects of interest and only get updates about
these forwarded to them. Further, a primitive to ensure con-
sistency over a set of operations is needed for future work
in this space. An efficient transaction primitive has to be de-
veloped that works well with the proxy architecture.

The presented results further suggest that TEEs may en-
able novel peer-to-peer applications with stronger integrity
guarantees. In such a setup, instead of a centralized server
that is used as a backbone for all operations, data is sharded
across the peer to peer network. Unlike in conventional peer-
to-peer applications, nodes using this architecture can rely
on other parties to not misbehave.
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